skip to content

Cambridge Centre for Housing & Planning Research

 

Ancient seafloor vents spewed tiny, life-giving minerals into Earth’s early oceans

News from the University of Cambridge - Fri, 02/02/2024 - 16:38

Their study, published in Science Advances, examined 3.5-billion-year-old rocks from western Australia in previously unseen detail and identified large quantities of a mineral called greenalite, which is thought to have played a role in early biological processes. The researchers also found that the seafloor vents would have seeded the oceans with apatite, a mineral rich in the life-essential element phosphorus.

The earliest lifeforms we know of—single-celled microorganisms, or microbes—emerged around 3.7 billion years ago. Most of the rocks that contain traces of them and the environment they lived in have, however, been destroyed. Some of the only evidence we have of this pivotal time comes from an outcrop of sediments in the remote Australian outback.

The so-called Dresser Formation has been studied for years but, in the new study, researchers re-examined the rocks in closer detail, using high magnification electron microscopes to reveal tiny minerals that were essentially hidden in plain sight.

The greenalite particles they observed measured just a few hundred nanometres in size—so small that they would have been washed over thousands of kilometres, potentially finding their way into a range of environments where they may have kick-started otherwise unfavourable chemical reactions, such as those involved in building the first DNA and RNA molecules.

“We’ve found that hydrothermal vents supplied trillions upon trillions of tiny, highly-reactive greenalite particles, as well as large quantities of phosphorus,” said Professor Birger Rasmussen, lead author of the study from the University of Western Australia.

Rasmussen said scientists are still unsure as to the exact role of greenalite in building primitive cells, “but this mineral was in the right place at the right time, and also had the right size and crystal structure to promote the assembly of early cells.”

The rocks the researchers studied contain characteristic layers of rusty-red, iron-rich jasper which formed as mineral-laden seawater spewed from hydrothermal vents. Scientists had thought the jaspers got their distinctive red colour from particles of iron oxide which, just like rust, form when iron is exposed to oxygen.

But how did this iron oxide form when Earth’s early oceans lacked oxygen? One theory is that photosynthesising cyanobacteria in the oceans produced the oxygen, and that it wasn’t until later, around 2.4 billion years ago, that this oxygen started to skyrocket in the atmosphere.

The new results change that assumption, however, “the story is completely different once you look closely enough,” said study co-author Professor Nick Tosca from Cambridge’s Department of Earth Sciences.

The researchers found that tiny, drab, particles of greenalite far outnumbered the iron oxide particles which give the jaspers their colour. The iron oxide was not an original feature, discounting the theory that they were formed by the activity of cyanobacteria.

“Our findings show that iron wasn’t oxidised in the oceans; instead, it combined with silica to form tiny crystals of greenalite,” said Tosca. “That means major oxygen producers, cyanobacteria, may have evolved later, potentially coinciding with the soar in atmospheric oxygen during the Great Oxygenation Event.”

Birger said that more experiments are needed to identify how greenalite might facilitate prebiotic chemistry, “but it was present in such vast quantities that, under the right conditions its surfaces could have synthesized an enormous number of RNA-type sequences, addressing a key question in origin of life research – where did all the RNA come from?” 

Reference:
Rasmussen, B., Muhling, J., Tosca, N.J. 'Nanoparticulate apatite and greenalite in oldest, well-preserved hydrothermal vent precipitates.' Science Advances (2024). DOI: 10.1126/sciadv.adj4789

Researchers from the universities of Cambridge and Western Australia have uncovered the importance of hydrothermal vents, similar to underwater geysers, in supplying minerals that may have been a key ingredient in the emergence of early life.

MARUM − Zentrum für Marine Umweltwissenschaften, Universität BremenThe hydrothermal vent "Candelabra" in the Logatchev hydrothermal field on the Mid-Atlantic Ridge at a water depth of 3300 m


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

Swarming cicadas, stock traders, and the wisdom of the crowd

News from the University of Cambridge - Thu, 01/02/2024 - 14:36

Pick almost any location in the eastern United States – say, Columbus Ohio. Every 13 or 17 years, as the soil warms in springtime, vast swarms of cicadas emerge from their underground burrows singing their deafening song, take flight and mate, producing offspring for the next cycle.

This noisy phenomenon repeats all over the eastern and southeastern US as 17 distinct broods emerge in staggered years. In spring 2024, billions of cicadas are expected as two different broods – one that appears every 13 years and another that appears every 17 years – emerge simultaneously.

Previous research has suggested that cicadas emerge once the soil temperature reaches 18°C, but even within a small geographical area, differences in sun exposure, foliage cover or humidity can lead to variations in temperature.

Now, in a paper published in the journal Physical Review E, researchers from the University of Cambridge have discovered how such synchronous cicada swarms can emerge despite these temperature differences.

The researchers developed a mathematical model for decision-making in an environment with variations in temperature and found that communication between cicada nymphs allows the group to come to a consensus about the local average temperature that then leads to large-scale swarms. The model is closely related to one that has been used to describe ‘avalanches’ in decision-making like those among stock market traders, leading to crashes.

Mathematicians have been captivated by the appearance of 17- and 13-year cycles in various species of cicadas, and have previously developed mathematical models that showed how the appearance of such large prime numbers is a consequence of evolutionary pressures to avoid predation. However, the mechanism by which swarms emerge coherently in a given year has not been understood.

In developing their model, the Cambridge team was inspired by previous research on decision-making that represents each member of a group by a ‘spin’ like that in a magnet, but instead of pointing up or down, the two states represent the decision to ‘remain’ or ‘emerge’.

The local temperature experienced by the cicadas is then like a magnetic field that tends to align the spins and varies slowly from place to place on the scale of hundreds of metres, from sunny hilltops to shaded valleys in a forest. Communication between nearby nymphs is represented by an interaction between the spins that leads to local agreement of neighbours.

The researchers showed that in the presence of such interactions the swarms are large and space-filling, involving every member of the population in a range of local temperature environments, unlike the case without communication in which every nymph is on its own, responding to every subtle variation in microclimate.

The research was carried out Professor Raymond E Goldstein, the Alan Turing Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP), Professor Robert L Jack of DAMTP and the Yusuf Hamied Department of Chemistry, and Dr Adriana I Pesci, a Senior Research Associate in DAMTP.

“As an applied mathematician, there is nothing more interesting than finding a model capable of explaining the behaviour of living beings, even in the simplest of cases,” said Pesci.

The researchers say that while their model does not require any particular means of communication between underground nymphs, acoustical signalling is a likely candidate, given the ear-splitting sounds that the swarms make once they emerge from underground.

The researchers hope that their conjecture regarding the role of communication will stimulate field research to test the hypothesis.

“If our conjecture that communication between nymphs plays a role in swarm emergence is confirmed, it would provide a striking example of how Darwinian evolution can act for the benefit of the group, not just the individual,” said Goldstein.

This work was supported in part by the Complex Physical Systems Fund.

Reference:
R.E. Goldstein, R.L. Jack, and A.I. Pesci. ‘How Cicadas Emerge Together: Thermophysical Aspects of their Collective Decision-Making.’ Physical Review E (2024). DOI: 10.1103/PhysRevE.109.L022401

The springtime emergence of vast swarms of cicadas can be explained by a mathematical model of collective decision-making with similarities to models describing stock market crashes.

Ed Reschke via Getty ImagesAdult Periodical Cicada


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Shadow Science and Technology Secretary discusses AI and innovation during Cambridge visit

News from the University of Cambridge - Tue, 30/01/2024 - 15:08

The visit took place at Cambridge Innovation Capital and was hosted by Innovate Cambridge – an initiative which is bringing together partners across the city region to deliver an inclusive future for Cambridge and its science and technology cluster. The Shadow Minister met with experts on AI from the University and from industry, discussing both the challenges it presents, as well as the enormous potential for AI to serve science, people, and society.

At the opening roundtable, academics including Professor Dame Diane Coyle (Director of the Bennett Institute of Public Policy), Professor Neil Lawrence (DeepMind Professor of Machine Learning), and Professor John Aston (Professor of Statistics in Public Life), provided expert analysis on AI policy challenges as well as the role AI can play in public service reform. The group discussed how governance systems need to evolve for the AI era, and how an increasingly complex information infrastructure can be managed. In addition, they considered the opportunity that AI presents for improving public services and breaking down siloed decision-making within government.

Mr Kyle took part in a series of ‘flash talks’, focused on areas where research in AI is delivering benefits to society. These included work by Dr Ronita Bardhan, from the University’s Department of Architecture, on a new deep-learning model which makes it far easier and cheaper to identify ‘hard-to-decarbonise’ houses and develop strategies to improve their green credentials. Dr Anna Moore presented her work in the Department of Psychiatry, using AI systems to speed up the diagnosis of mental health conditions in children.

In the afternoon, Mr Kyle met with leaders representing civic institutions, academia and business organisations from across the city, including Councillor Mike Davey, Leader of Cambridge City Council, and Andrew Williamson, Managing Partner at Cambridge Innovation Capital. They spoke about their shared vision and strategy for the region to ensure Cambridge remains a globally leading innovation centre, and a collective desire to deliver benefits both locally and across the UK.

The day concluded with a spin-out and business roundtable at which participants discussed the need for government and the private sector to be active in ensuring AI benefits all parts of the UK, and people are re-skilled as jobs change. Mr Kyle was also interested to explore how the UK can become a more attractive place to scale companies. Key considerations included the need to improve access to talent, capital and infrastructure, as well tackling the regulatory barriers which can make the UK less competitive.

Peter Kyle MP, the Shadow Secretary of State for Science, Innovation and Technology, met academics from the University of Cambridge and leaders from the Cambridge community for a day focused on AI policy and innovation.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Scientists identify how fasting may protect against inflammation

News from the University of Cambridge - Tue, 30/01/2024 - 09:55

In research published in Cell Reports, the team describes how fasting raises levels of a chemical in the blood known as arachidonic acid, which inhibits inflammation. The researchers say it may also help explain some of the beneficial effects of drugs such as aspirin.

Scientists have known for some time that our diet – particular a high calorie Western diet – can increase our risk of diseases including obesity, type 2 diabetes and heart disease, which are linked to chronic inflammation in the body.

Inflammation is our body’s natural response to injury or infection, but this process can be triggered by other mechanisms, including by the so-called ‘inflammasome’, which acts like an alarm within our body’s cells, triggering inflammation to help protect our body when it senses damage. But the inflammasome can trigger inflammation in unintentional ways – one of its functions is to destroy unwanted cells, which can result in the release of the cell’s contents into the body, where they trigger inflammation.

Professor Clare Bryant from the Department of Medicine at the University of Cambridge said: “We’re very interested in trying to understand the causes of chronic inflammation in the context of many human diseases, and in particular the role of the inflammasome.

“What's become apparent over recent years is that one inflammasome in particular – the NLRP3 inflammasome – is very important in a number of major diseases such as obesity and atherosclerosis, but also in diseases like Alzheimer's and Parkinson's disease, many of the diseases of older age people, particularly in the Western world.”

Fasting can help reduce inflammation, but the reason why has not been clear. To help answer this question, a team led by Professor Bryant and colleagues at the University of Cambridge and National Institute for Health in the USA studied blood samples from a group of 21 volunteers, who ate a 500kcal meal then fasted for 24 hours before consuming a second 500kcal meal. 

The team found that restricting calorie intake increased levels of a lipid known as arachidonic acid. Lipids are molecules that play important roles in our bodies, such as storing energy and transmitting information between cells. As soon as individuals ate a meal again, levels of arachidonic acid dropped.

When the researchers studied arachidonic acid’s effect in immune cells cultured in the lab, they found that it turns down the activity of the NLRP3 inflammasome. This surprised the team as arachidonic acid was previously thought to be linked with increased levels of inflammation, not decreased.

Professor Bryant, a Fellow of Queens’ College, Cambridge, added: “This provides a potential explanation for how changing our diet – in particular by fasting – protects us from inflammation, especially the damaging form that underpins many diseases related to a Western high calorie diet.

“It’s too early to say whether fasting protects against diseases like Alzheimer's and Parkinson's disease as the effects of arachidonic acid are only short-lived, but our work adds to a growing amount of scientific literature that points to the health benefits of calorie restriction. It suggests that regular fasting over a long period could help reduce the chronic inflammation we associate with these conditions. It's certainly an attractive idea.”

The findings also hint at one mechanism whereby a high calorie diet might increase the risk of these diseases. Studies have shown that some patients that have a high fat diet have increased levels of inflammasome activity.

“There could be a yin and yang effect going on here, whereby too much of the wrong thing is increasing your inflammasome activity and too little is decreasing it,” said Professor Bryant. “Arachidonic acid could be one way in which this is happening.”

The researchers say the discovery may also offer clues to an unexpected way in which so-called non-steroidal anti-inflammatory drugs such as aspirin work. Normally, arachidonic acid is rapidly broken down in the body, but aspirin stops this process, which can lead to an increase in levels of arachidonic acid, which in turn reduce inflammasome activity and hence inflammation.

Professor Bryant said: “It’s important to stress that aspirin should not be taken to reduce risk of long terms diseases without medical guidance as it can have side-effects such as stomach bleeds if taken over a long period.”

The research was funded by Wellcome, the Medical Research Council and the US National Heart, Lung, and Blood Institute Division of Intramural Research.

Reference
Pereira, M & Liang, J et al. Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting. Cell Reports; 23 Jan 2024; DOI: 10.1016/j.celrep.2024.113700

Cambridge scientists may have discovered a new way in which fasting helps reduce inflammation – a potentially damaging side-effect of the body’s immune system that underlies a number of chronic diseases.

Our work adds to a growing amount of scientific literature that points to the health benefits of calorie restrictionClare BryantCarol Yepes (Getty Images)Intermittent fasting conceptual image


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Religious people coped better with Covid-19 pandemic, research suggests

News from the University of Cambridge - Tue, 30/01/2024 - 09:21

People of religious faith may have experienced lower levels of unhappiness and stress than secular people during the UK’s Covid-19 lockdowns in 2020 and 2021, according to a new University of Cambridge study released as a working paper.

The findings follow recently published Cambridge-led research suggesting that worsening mental health after experiencing Covid infection – either personally or in those close to you – was also somewhat ameliorated by religious belief. This study looked at the US population during early 2021.

University of Cambridge economists argue that – taken together – these studies show that religion may act as a bulwark against increased distress and reduced wellbeing during times of crisis, such as a global public health emergency.

“Selection biases make the wellbeing effects of religion difficult to study,” said Prof Shaun Larcom from Cambridge’s Department of Land Economy, and co-author of the latest study. “People may become religious due to family backgrounds, innate traits, or to cope with new or existing struggles.”

“However, the Covid-19 pandemic was an extraordinary event affecting everyone at around the same time, so we could gauge the impact of a negative shock to wellbeing right across society. This provided a unique opportunity to measure whether religion was important for how some people deal with a crisis.”

Larcom and his Cambridge colleagues Prof Sriya Iyer and Dr Po-Wen She analysed survey data collected from 3,884 people in the UK during the first two national lockdowns, and compared it to three waves of data prior to the pandemic.

They found that while lockdowns were associated with a universal uptick in unhappiness, the average increase in feeling miserable was 29% lower for people who described themselves as belonging to a religion.*

The researchers also analysed the data by “religiosity”: the extent of an individual’s commitment to religious beliefs, and how central it is to their life. Those for whom religion makes “some or a great difference” in their lives experienced around half the increase in unhappiness seen in those for whom religion makes little or no difference.**

“The study suggests that it is not just being religious, but the intensity of religiosity that is important when coping with a crisis,” said Larcom.

Those self-identifying as religious in the UK are more likely to have certain characteristics, such as being older and female. The research team “controlled” for these statistically to try and isolate the effects caused by faith alone, and still found that the probability of religious people having an increase in depression was around 20% lower than non-religious people.

There was little overall difference between Christians, Muslims and Hindus – followers of the three biggest religions in the UK. However, the team did find that wellbeing among some religious groups appeared to suffer more than others when places of worship were closed during the first lockdown.

“The denial of weekly communal attendance appears to have been particularly affecting for Catholics and Muslims,” said Larcom.

For the earlier study, authored by Prof Sriya Iyer, along with colleagues Kishen Shastry, Girish Bahal and Anand Shrivastava from Australia and India, researchers used online surveys to investigate Covid-19 infections among respondents or their immediate family and friends, as well as religious beliefs, and mental health. 

The study was conducted during February and March 2021, and involved 5,178 people right across the United States, with findings published in the journal European Economic Review in November 2023.

Researchers found that almost half those who reported a Covid-19 infection either in themselves or their immediate social network experienced an associated reduction in wellbeing.

Where mental health declined, it was around 60% worse on average for the non-religious compared to people of faith with typical levels of “religiosity”.***

Interestingly, the positive effects of religion were not found in areas with strictest lockdowns, suggesting access to places of worship might be even more important in a US context. The study also found significant uptake of online religious services, and a 40% lower association between Covid-19 and mental health for those who used them****.

“Religious beliefs may be used by some as psychological resources that can shore up self-esteem and add coping skills, combined with practices that provide social support,” said Prof Iyer, from Cambridge’s Faculty of Economics.

“The pandemic presented an opportunity to glean further evidence of this in both the United Kingdom and the United States, two nations characterised by enormous religious diversity.” 

Added Larcom: “These studies show a relationship between religion and lower levels of distress during a global crisis. It may be that religious faith builds resilience, and helps people cope with adversity by providing hope, consolation and meaning in tumultuous times.”  

Two Cambridge-led studies suggest that the psychological distress caused by lockdowns (UK) and experience of infection (US) was reduced among those of faith compared to non-religious people.  

Getty/Luis AlvarezPeople in church praying with covid-19 restrictions Notes

* The increase in the mean measure for unhappiness was 6.1 percent for people who do not identify with a religion during the lockdown, compared to an increase of 4.3 percent for those who do belong to a religion – a difference of 29%.

**For those that religion makes little or no difference, the increase was 6.3 percent.  For those for whom religion makes some or a great difference, the increase was around half that, at 3 percent and 3.5 percent respectively.

*** This was after controlling for various demographic and environmental traits, including age, race, income, and average mental health rates prior to the pandemic.

**** The interpretation is from Column 1 of Table 5: Determinants of mental health, online access to religion. Where the coefficients of Covid {Not accessed online service} is 2.265 and Covid {Accessed online service} is 1.344. Hence the difference is 2.265-1.344 = 0.921 which is 40% of 2.265.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Robot trained to read braille at twice the speed of humans

News from the University of Cambridge - Mon, 29/01/2024 - 06:04

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

 

Reference:
Parth Potdar et al. ‘High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions.’ IEEE Robotics and Automation Letters (2024). DOI: 10.1109/LRA.2024.3356978

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

Parth PotdarRobot braille reader


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Cambridge student Giulio Regeni remembered

News from the University of Cambridge - Thu, 25/01/2024 - 15:57

The plaque offers a space in which colleagues and friends of the Cambridge PhD student, who studied at Girton, can pay their respects.

Giulio, an experienced researcher, was conducting fieldwork when he was abducted from the streets of Cairo on 25 January 2016, and later found murdered on 3 February 2016. The plaque unveiling marks the 8-year anniversary of his death. No one has yet been convicted of the crime.

Court officials in Rome have charged four Egyptian security officials with Giulio’s abduction, torture and murder, and a trial is due to begin in February. The College and University continue to stand in support of Giulio’s family and friends, and with Amnesty International, in their tireless efforts to uncover the truth of what happened to Giulio.

Elisabeth Kendall, Mistress of Girton College, said: “The loss of Giulio continues to cast a dark shadow over all those who knew him. Giulio was a passionate researcher with a deep sense of justice who had his whole life ahead of him before it was cruelly ended in Cairo. Justice has yet to be done. We will never stop remembering Giulio.”

Every year the College marks the anniversary by flying the College flag to half-mast in memory on 25 January and then on 3 February.

Giulio Regeni was remembered during an event at Girton College, where a plaque was unveiled in his honour.

Giulio was a passionate researcher with a deep sense of justice.Elisabeth Kendall, Mistress of Girton CollegeGirton College, University of Cambridge.Elisabeth Kendall, Mistress of Girton College, unveils the plaque honouring Giulio Regeni.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New Pro-Vice-Chancellor for Innovation appointed

News from the University of Cambridge - Wed, 24/01/2024 - 12:06

Dr O’Brien will take over from current Senior Pro-Vice-Chancellor Andy Neely, whose term of office finishes at the end of February. Dr O’Brien, who has a PhD in Physics from the University of Sheffield and a degree in Materials Science from Trinity College Dublin, joined Cambridge Enterprise from Trinity College Dublin, where he was Chief Innovation Officer. At Cambridge Enterprise he has led a new strategy which has supported activities such as the establishment of Innovate Cambridge, the formation of Founders at the University of Cambridge, the integration and renewal of ideaSpace and the commencement of the Technology Investment Fund to support the development of University intellectual property.

“The University and the broader Cambridge ecosystem are recognised as being globally leading for innovation, enterprise and entrepreneurship,” said Dr O’Brien.
“I have seen this first-hand from my role as Chief Executive of Cambridge Enterprise and in helping to establish Innovate Cambridge. I look forward to my new role as Pro-Vice-Chancellor for Innovation and continuing to enhance the ambition for how the University of Cambridge can enable impact from our research and through our innovation partnerships.”

He replaces Professor Andy Neely, who has served as Pro-Vice-Chancellor for Enterprise and Business Relations since March 2017, and received an OBE for services to University/Industry Collaboration in 2020. Professor Neely’s achievements as Pro-Vice-Chancellor included leading the University’s Recovery Programme helping the University respond to the coronavirus pandemic, overseeing the establishment of the Change and Programme Management Board, as well as building far stronger links with the local and regional innovation community through important initiatives such as Innovate Cambridge.

Professor Neely said: “I’m honoured to have served in this role for seven years and delighted that Diarmuid has been appointed as my successor. The University of Cambridge’s impact on the world is significantly enhanced by our engagement with business and our world-leading innovation ecosystem and I have no doubt that this will go from strength to strength under Diarmuid’s leadership”.

The University of Cambridge Vice-Chancellor Professor Deborah Prentice welcomed Dr O’Brien to the role and thanked Professor Neely for his service.

She said: “I warmly congratulate Diarmuid on being appointed to this important role. With his wealth of experience in driving innovation, most recently at Cambridge Enterprise, he will help ensure no momentum is lost in the handover from the previous Pro-Vice-Chancellor, Andy Neely.
“I would like to put on record my sincerest thanks to Andy for his service to Cambridge, both as an academic leader and as Pro-Vice-Chancellor for Enterprise and Business Relations. I know I speak on behalf of all University colleagues when I say how grateful we are for what he has achieved in that role over the past seven years.”

The Pro-Vice-Chancellor for Innovation is broadly the same role as the current Pro-Vice-Chancellor for Enterprise and Business Relations role, but with an enhanced focus on industry, enterprise and innovation.

Dr O’Brien takes up the role in April, and will remain in his current capacity at Cambridge Enterprise for one day a week to provide continuity and connection with Cambridge Enterprise.

There are five Pro-Vice-Chancellors at the University of Cambridge. Their role is to work in partnership with senior administrators to help drive strategy and policy development. The Pro-Vice-Chancellors also support the Vice-Chancellor in providing academic leadership to the University.
 

Dr Diarmuid O’Brien has been appointed as the University of Cambridge’s new Pro-Vice-Chancellor for Innovation. He is currently Chief Executive of Cambridge Enterprise, the University’s commercialisation arm which supports academics, researchers, staff and students in achieving knowledge transfer and research impact.

RMG PhotographyDr Diarmuid O’Brien


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes